skip to main content

Wednesday Seminar Series

Wednesday, July 18, 2018
12:00pm to 1:00pm
Add to Cal

Come hear from Caltech faculty and JPL scientists about their exciting research! Lunch will be served to the first 100 guests.

This week features Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering.

World's Deepest-Penetration and Fastest Cameras: Photoacoustic Tomography and Compressed Ultrafast Photography

We developed photoacoustic tomography to peer deep into biological tissue. Photoacoustic tomography (PAT) provides in vivo omniscale functional, metabolic, molecular, and histologic imaging across the scales of organelles through organisms. We also developed compressed ultrafast photography (CUP) to record 10 trillion frames per second, 10 orders of magnitude faster than commercially available camera technologies. CUP can tape the fastest phenomenon in the universe, namely, light propagation, and can be slowed down for slower phenomena such as combustion.


PAT physically combines optical and ultrasonic waves. Conventional high-resolution optical imaging of scattering tissue is restricted to depths within the optical diffusion limit (~1 mm in the skin). Taking advantage of the fact that ultrasonic scattering is orders of magnitude weaker than optical scattering per unit path length, PAT beats this limit and provides deep penetration at high ultrasonic resolution and high optical contrast by sensing molecules. Broad applications include early-cancer detection and brain imaging. The annual conference on PAT has become the largest in SPIE's 20,000-attendee Photonics West since 2010.


CUP can image in 2D non-repetitive time-evolving events. CUP has a prominent advantage of measuring an x, y, t (x, y, spatial coordinates; t, time) scene with a single exposure, thereby allowing observation of transient events occurring on a time scale down to 100 femtoseconds. Further, akin to traditional photography, CUP is receive-only—avoiding specialized active illumination required by other single-shot ultrafast imagers. CUP can be coupled with front optics ranging from microscopes to telescopes for widespread applications in both fundamental and applied sciences. http://COILab.caltech.edu/

For more information, please contact Student-Faculty Programs Office by phone at 626-395-2885 or by email at sfp@caltech.edu.