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Hardware-efficient generative quantum Eigensolver for ground state energy estimation 
Stuart C. Florescu 
Mentors: Alan Aspuru-Guzik, R. Michael Alvarez, and Austin Cheng  

Accurately determining ground state energies of molecular Hamiltonians lies at the heart of quantum 
chemistry, condensed matter physics, and optimization, but doing so on today’s noisy quantum 
devices remains a major challenge. Reliable energy estimation not only advances fundamental science 
but also underpins applications such as material design and drug discovery. Variational approaches 
such as the VQE offer a path forward but are hindered by barren plateaus and circuit depths that 
exceed hardware capabilities. Generative methods avoid some of these issues by directly learning to 
produce low-energy circuits, yet existing models rely on large, composite gate sets that are not suited 
to near-term devices. 

That’s why we develop the Hardware-Efficient Generative Quantum Eigensolver (HE-GQE), which 
generates quantum circuits composed solely of device-native gates. Our approach produces shallow, 
hardware-executable circuits that maintain competitive accuracy in estimating Hamiltonian ground 
states. Benchmarks on H₂ demonstrate reliable dissociation curves, and preliminary extensions to 
BeH₂, LiH, and N₂ suggest improved scalability over standard VQE baselines. By combining generative 
modeling with hardware-efficient design, this work establishes a practical framework for ground state 
estimation on noisy intermediate-scale quantum devices and points toward broader applications in 
quantum chemistry and combinatorial optimization. 

Supporting teaching assistants in theoretical computer science courses 
Joseph W. Giambrone III 
Mentors: Adam Blank, Claire Ralph, and Matthew M. Gherman  

Theoretical computer science classes at Caltech, like CS 38 (Algorithms), are notoriously difficult. In 
particular, there are typically not enough resources to support the teaching assistants (“TAs”) for 
these classes. Additionally, CS 38 does not currently have recitations, leading to a potential disconnect 
between lecture materials and homework. Bridging this gap would help students take away more 
concepts from the class. Our objective is to make improvements to CS 38 informed by a literature 
review of the current research in computer science education. Specifically, we want to focus on what 
resources are effective for TAs in classes on algorithms and other theoretical computer science 
classes. Through this project, we have created new rubric items for archetypes of problems, hints for 
TAs to provide during office hours, new problems and solutions to replace the existing homework sets, 
and a full set of weekly recitation materials that include example problems and walkthroughs. We 
hope that as a result of our work, CS 38 will be a more enjoyable and less frustrating experience for 
students next spring. 

Extending BayesRays for reliable spatial uncertainty in ill-posed inverse problems 
Kyle T. Berkson 
Mentors: Katherine L. Bouman and Brandon Zhao  

Spatial uncertainty quantification is indispensable when implicit neural representations are used to 
solve ill-posed inverse-imaging problems. We investigate—a post-hoc Laplace-approximation method 
originally designed for 3-D NeRFs—as a drop-in estimator for 2-D and 3-D imaging pipelines whose 
reconstructions are parameterised by coordinate MLPs. On synthetic Fourier- and Radon-based data, 
BayesRays exhibits two systematic failure modes: (i) an inverse correlation with ensemble variance 
that over-confidently scores high-frequency structure while inflating uncertainty in flat regions, and (ii) 
“marbling’’ artefacts that arise from the diagonal Fisher approximation. We trace both pathologies to a 



 
 

mismatch between BayesRays’ deformation grid and the geometry of general inverse problems, where 
the forward operator breaks the one-to-one mapping between image and measurement domains. 
Using this diagnosis we propose a banded-Hessian variant that suppresses marbling without sacrificing 
computational efficiency, and outline a roadmap for extending these ideas to VLBI and dynamic black-
hole tomography. These results show that naïvely transplanting BayesRays is insufficient, but that a 
geometry-aware adaptation can yield trustworthy spatial error bars for scientifically critical 
reconstructions. 

Understanding the computational limits of bipartite graph alignment 
Eric M. He 
Mentors: Daniel Cullina and Adam C. Wierman  

The growing use of anonymized datasets raises concerns about privacy, particularly their susceptibility 
to de-anonymization attacks via alignment of correlated data. While graph alignment has been studied 
extensively in the undirected setting, many real-world settings involve bipartite structures with two 
distinct node sets, such as users and features, that are both independently anonymized and shuffled. 
We investigate the information-theoretic limits of aligning correlated bipartite graphs. Specifically, we 
aim to understand the computational boundary of this problem, where statistically correct recovery is 
possible but no known polynomial-time algorithms succeed, and explore how different alignment 
algorithms behave in this regime. Using a correlated Erdős–Rényi model as a base, we analyze the 
relationship between various graph parameters and alignment accuracy, and we propose novel 
algorithmic approaches informed by such probabilistic analysis. Our work provides a deeper 
understanding of the computational feasibility of different regimes in bipartite graph alignment for 
de-anonymization.  

Multivariate continued fraction regression with target derivatives  
Kieran A. Hale 
Mentors: Pablo A. Moscato, Adam C. Wierman, and Andreas Heinecke  

Continued Fraction Regression (CFR) is a recent method in symbolic multivariate regression that is 
based on representing the model as a continued fraction. CFR can be implemented with flexible depth 
naturally limiting the need to impose a structure on the model before training, which symbolic 
regression methods often do. The appeal of symbolic regression itself over methods like ANNs or SVR 
lies in the potential simplicity of the resulting model and its amenability to downstream analysis. For 
univariate problems, it has been shown that supplying both approximate and exact derivative 
information as part of a memetic algorithm for CFR can improve the performance of the resulting 
models – this method has been called CFR with target derivatives. This work extends CFR with target 
derivatives to multivariate regressions. 

Towards a digital twin: Applying ML methodologies to complete solar event data 
Chigozirim N. Ifebi 
Mentors: Hillary Mushkin and Ashish Mahabal  

This project investigates methods for analyzing and predicting high-latitude particle precipitation using 
Defense Meteorological Satellite Program (DMSP) data and physics-based and machine learning 
models. I began by exploring the Ovation Prime model and precipNet framework, developing 
visualizations of auroral boundaries and electron energy flux in both polar and time-series contexts. To 
evaluate predictive modeling, I trained machine learning baselines, including random forests, to 
forecast electron energy flux month-ahead; while initial results highlighted challenges due to the 
highly variable nature of the flux, they provided a benchmark for comparison. I then implemented the 
SAITS (Self-Attention-based Imputation for Time Series) architecture to address data gaps and 
explore sequence-to-sequence forecasting in a multivariate setting that included geomagnetic indices 
(AE, Bz, SymH). This required restructuring the dataset into sequential formats, masking values for 
imputation, and adapting GPU-based training in Google Colab. Alongside, I developed interactive 
 

  



 
 

visualizations to contextualize model outputs with DMSP observations. The results demonstrate both 
the promise and challenges of applying advanced sequence models to space physics: while 
computational resource limitations constrained large-scale experiments, the pipeline establishes a 
foundation for using attention-based architectures to better capture precipitation variability. 

Data visualization for an exploratory sun emissions dashboard 
Anya B. Mischel 
Mentors: Hillary Mushkin, Allan Labrador, Ashish Mahabal, and Santiago V. Lombeyda  

Understanding solar flare activity is a critical area of astrophysics due to its potential to disrupt 
satellites, communication systems, and power grids on Earth. With over 25 years of solar probe data 
totaling approximately 1 TB, efficient data summarization and visualization are essential for identifying 
trends in solar activity. We developed an interactive web-based visual analysis interface and 
dashboard utilizing data from the STEREO and ACE missions. This tool enables researchers to filter 
solar events by various determinants (including emission strength, classification, etc), examine 
specific time windows, and sort by various parameters. Researchers can explore relationships between 
key variables such as event duration, peak emission magnitudes of detected elements, element ratios 
(e.g., iron-to-oxygen), and overall flare intensity. This tool facilitates deeper insights into the 
dynamics of solar flare activity and lays the groundwork to integrate additional datasets from other 
solar probes and add additional features. 

Using an expected volume heuristic to guide adaptive sampling of molecular dynamics 
simulations of proteins 
Gavin N. John 
Mentors: Gregory Bowman and Mitchell Guttman  

The vast majority of drugs target proteins. As such, identification of protein binding sites and an 
understanding of protein conformational heterogeneity are important first steps in virtual drug 
discovery. The Bowman lab specializes in the identification and characterization of cryptic pockets: 
binding sites normally internal to the protein, but that become exposed as the protein undergoes 
conformational changes. Due to their nature, these are much harder to identify, but represent a 
massive number of potential drug targets. The lab has developed several tools to assist in the 
discovery of cryptic pockets, of which two are particularly important. The first, PocketMiner, is a neural 
network that can quickly and accurately predict residues that might form part of cryptic pockets. The 
second, FAST (Fluctuation Amplification of Specific Traits), is a conformational analysis tool that uses 
adaptive sampling and a customizable geometric component to direct molecular dynamics simulations 
to conformational spaces of interest. Here, we developed a new geometric component that uses the 
predictions from PocketMiner to generate an estimate of the pocket volume that was used in a FAST 
simulation of a candidate protein target, TEM-1 beta-lactamase, which successfully demonstrated 
pocket opening behavior.  

Functional flow matching for self-supervised representation learning on time series data 
Duy H. Nguyen 
Mentors: Anima Anandkumar, Jiachen Yao, and Jiayun Wang  

Self-supervised approaches like masked autoencoding have proven effective for learning time series 
representations. However, their architectures typically yield a single static feature vector, limiting their 
ability to support downstream tasks that require multi-level classification from the same input signal. 
We propose a self-supervised learning framework based on Functional Flow Matching (FFM), a 
continuous-time generative model that operates directly in function spaces. By pretraining an FFM 
model, we learn rich and label-free representations of time series trajectories. We address the 
challenge of distribution shift between the noisy inputs seen during pretraining and the clean data 
samples used for downstream tasks. We hypothesize that because FFM allows for extracting features 
at any intermediate time step of the generative process, we can access a feature hierarchy 
corresponding to different levels of abstraction. A key novelty of our approach is exploiting this to 
  



 
 

perform multi-level feature extraction—capturing everything from low-level patterns to high-level 
semantic concepts—all from a single pretrained model. We will demonstrate that this approach 
enables more powerful and versatile representations, and we evaluate our method on downstream 
tasks, including multi-label classification. 

Towards formal verification of neural networks in Lean 
Jennifer A. Cruden 
Mentors: Anima Anandkumar and Robert Joseph George  

Modern neural networks are increasingly deployed in safety-critical domains, yet empirical testing 
alone leaves potential failures undetected. We present a machine learning framework in Lean, an 
interactive theorem prover, that supports both rigorous proofs of network behavior and concrete 
execution. The framework provides a flexible tensor library and modular layer definitions for common 
architectures such as multilayer perceptrons, convolutional networks, and transformers. Networks are 
defined over a generic scalar type. This allows the same model to be analyzed with real numbers for 
formal proofs or executed with rationals or floats for computation and interoperability with tools like 
PyTorch. To illustrate feasibility, we specify and run a two-layer perceptron in both Lean and PyTorch, 
while reasoning about its properties over the reals. Although current results focus on idealized reals, 
future work aims to address floating-point semantics. This unification of proof and execution within a 
single system lays the foundation for end-to-end formal verification of neural networks in Lean, 
offering a basis for trustworthy AI. 


