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Neural operators for dissipative relativistic magnetohydrodynamics 
Ansh V. Desai 
Mentors: Anima Anandkumar, Chuwei Wang, Elias R. Most, and Valentin Duruisseaux  

Relativistic dissipative magnetohydrodynamics is essential for modeling high-energy astrophysical 
systems such as black hole accretion flows, where non-equilibrium effects like shear stress, heat flux, 
and magnetic conduction play a critical role. While these dissipative contributions are necessary for 
accurate simulations, their repeated evaluation in large-scale numerical solvers is prohibitively 
expensive, often requiring hundreds of millions of GPU hours. In this work, we utilize a Fourier Neural 
Operator based framework to bypass this computational bottleneck by learning a surrogate model for 
the evolution of dissipative quantities from easily computed local fluid states. This approach takes 
advantage of the remarkable discretization-invariance and generalization capabilities of neural 
operator to predict small-scale dissipative dynamics with high efficiency, enabling rapid integration 
into global simulations. 

Shape optimization with neural operators 
Jiayi Zhou 
Mentors: Anima Anandkumar and Valentin Duruisseaux  

Shape optimization is central to modern engineering design. A typical pipeline involves shape 
parameterization, PDE-based evaluation of performance metrics, and iterative optimization. In this 
work, we propose a fully differentiable shape optimization framework that leverages neural networks 
(NNs) for shape representation and neural operators (NOs) for efficient PDE approximation. Unlike 
traditional approaches such as control nodes, which require extensive manual setup and offer limited 
flexibility, our NN-based parameterization supports complex geometries and enables gradient-based 
optimization. We also aim to address the incorporation of geometric constraints. Another key focus of 
our work is numerical robustness and convergence behavior during optimization. We investigate the 
distribution-invariance property of neural operators, ensuring consistent performance across varying 
discretizations and point cloud samplings. 

LeanLibrary: A unified framework for theorem proving in Lean 4 
Ryan L. Hsiang 
Mentors: Anima Anandkumar and Robert Joseph George  

Mathematics is experiencing a fundamental transformation through the integration of artificial 
intelligence and formal verification. Despite the significant advancements in combining large language 
models with the Lean theorem prover, much work is needed to address the critical challenges in 
codebase maintainability and performance limitations affecting user experience. This project integrates 
the various Lean+AI tools into a unified library, providing a consistent API for data extraction, 
interaction, model fine-tuning, and AI-assisted theorem proving. In addition, our work involves 
reimplementing the training pipeline to support modern transformer architectures, extending 
LeanCopilot to allow external API-based inference with GPU acceleration, and building Lean4Code, a 
user-friendly IDE for mathematicians. 

OrbNet-Materials: Orbital-based GNN for materials properties prediction 
Minhyuk Kang 
Mentors: Anima Anandkumar and Beom Seok Kang  

Accurate electronic band structures are fundamental to materials discovery, but DFT is 
computationally expensive and most ML surrogates either rely on geometry-only inputs or predict only 
scalar properties rather than the full band energy. Our OrbNet-Materials, a periodic extension of 
orbital-learning GNN can predict full electronic band structures for crystalline materials at a fraction of 
DFT cost. Building on the success of OrbNet in orbital learning for molecular system, we generate 



k-dependent atomic-orbital matrices via DFTB+ using low-cost semiempirical quantum mechanical 
(QM) calculations (GFN1-xTB) and feed them to an SE(3)-equivariant OrbNet framework. A PBC-aware 
graph links each unit cell to intra-cell and periodic-image neighbors within a cutoff, and per-k 
inference predicts εn(k) and derived properties. We train with a dispersion-aware loss: pointwise 
energy MSE plus finite-difference penalties on band slops, with optional extra weight at high-
symmetry points. Together, these components establish an end-to-end pipeline for orbital learning in 
periodic materials. OrbNet-Materials has strong potential to serve as a fast, orbital-aware surrogate 
for DFT in high-throughput discovery, driving inverse design and active-learning loops for 
photovoltaics, thermoelectrics, and catalysis. 

Partially observable model-based reinforcement learning for drag reduction in compressible 
turbulent flows 
Taeyang Park 
Mentors: Anima Anandkumar and Myrl Marmarelis  

Active control of compressible turbulent flows presents significant challenges not found in 
incompressible regimes, including long-term instabilities such as acoustic waves and local shocklets 
that destabilize simple control strategies. This work presents a framework for Partially Observable 
Model-Based Reinforcement Learning to address this challenge, evolving the PINO-PC architecture by 
leveraging a differentiable CFD solver (JAX-Fluids). We augment the original observer model to 
function as a multi-step "world model" that is trained on the full state information from the simulation. 
This augmented observer is designed to perform stable "rollouts", enabling the control policy, which 
operates on realistic partial observations from wall-mounted sensors, to anticipate and counteract the 
slow-building instabilities that myopic, single-step predictions would miss. We detail the architectural 
modifications required for this approach and ensuring the stability of the learned world model in multi-
step predictions. 

Discovery and parameter estimation of PDEs using physics-informed neural networks 
(PINNs) 
Edgar A. Larios 
Mentors: Franca Hoffmann, Aras Bacho, and Kathrin H. Hellmuth  

Jupiter captures high radiation levels and large quantities of radiation, making it very difficult for NASA 
spacecraft to probe the planet or its surroundings. To better design its missions, NASA relies on 
models that describe the radiation environment of Jupiter, as well as data collected from previous 
missions. The radiation environment of Jupiter can be represented by a partial differential equation 
(PDE) that is structurally similar to the Fokker-Planck equation. A physics-informed neural network 
(PINN) was used to discover, solve, and invert this PDE. Some of the techniques that were used to 
create a robust PINN-based pipeline include data normalization and hyperparameter tuning. To verify 
the reliability of the PINN, it was applied to synthetic benchmark problems. Results show that the 
PINN was able to solve all the PDEs (including the PDE that describes the radiation environment of 
Jupiter), but was always unable to properly recover the coefficients of the PDEs. These findings 
suggest that PINNs can solve forward problems reliably, but it is difficult to make them suitable for 
inverse problems. I recommend continued testing on synthetic benchmark problems to improve the 
robustness of the developed PINN-based pipeline before applying it to study Jupiter’s radiation 
environment. 

Optimal experimental design for Jupiter's radiation belt 
Cristian D. Peña 
Mentors: Franca Hoffmann, Aras Bacho, and Kathrin H. Hellmuth  

Understanding Jupiter’s radiation environment is critical for designing safe and effective spacecraft 
missions, yet the limited availability of observational data makes their dynamics mostly unknown. This 
project investigates how mathematical tools can improve the scientific return of spacecraft missions 
aimed at studying Jupiter’s radiation belt. We first model Jupiter’s radiation belts using a partial 
differential equation, the Fokker–Planck equation, whose coefficients must be estimated from sparse 
data. To estimate these coefficients, we pose a Bayesian inverse problem that incorporates prior 
knowledge and quantifies uncertainty while inferring model inputs from data. By parameterizing 



candidate paths and maximizing the determinant of the Fisher Information Matrix, which quantifies 
trajectory informativeness, we then identify spacecraft paths that offer the greatest potential for 
reducing model uncertainty. These efforts are supported by the adjoint method, which enables 
efficient computation of how changes in the model’s coefficients influence both its predictions and the 
informativeness of different designs. 

A survey of data-driven techniques for network inference 
Owen M. Tolbert 
Mentors: Andrew M. Stuart and George Stepaniants  

Networks are a crucial component of research across various scientific disciplines, and inferring the 
connectivity of those networks with sparse observational data is a pertinent challenge. Here we 
explore methods from causal inference and machine learning to solve this problem. We begin by 
studying the Synergestic, Unique, Redundant, Decomposition (SURD) framework to causally infer the 
connections between nodes in a networked dynamical system. In this direction, our results are 
inconclusive as the SURD framework does not infer unique dependencies between nodes and does not 
scale to larger network sizes. Next we explore the use of neural network architectures, specifically 
variational autoencoders, to recover network connectivity from time series data. Our preliminary 
experiments apply these methods to networks of mass-spring and Kuramoto oscillators, showing how 
they infer the structure of linear as well as nonlinear dynamical systems. 

Blow-up scenarios in the Keller-Segel system 
Zirui Wang 
Mentors: Thomas Y. Hou and Xiang Qin  

Blow-up phenomena are central to the study of nonlinear partial differential equations, capturing 
finite-time singularity formation and revealing deep links between analytic structure and dynamics. 
A key question is whether a solution admits a type I or type II blow-up ansatz, as this distinction 
governs both the qualitative behavior and the analytical approach. In many cases, the absence of an 
explicit blow-up profile makes determining the rate substantially more challenging. 

In this work, we focus on the Keller-Segel system, including both the variant with logistic damping and 
the high-dimensional case. We investigate the structure of exact self-similar profiles and the 
possibility of type II blow-up through a combination of asymptotic analysis and high-resolution 
numerical simulations, providing quantitative blow-up rate estimates and insights into the stability of 
the underlying profiles. 

Kernelized Stable Fluids for simulating physically accurate solutions 
Lennart A. Scholz 
Mentors: Houman Owhadi and Aras Bacho  

Solving the Navier–Stokes equations is of great importance both in physics and applied mathematics. 
Due to their nonlinearity, most of the established solution algorithms, such as the pseudospectral 
method, have shortcomings, including stability problems for large timesteps. This problem is 
addressed by the Stable Fluids method, which solves the Navier–Stokes equations in an 
unconditionally stable manner. However, the method has a disadvantage: the solution of the 
advection step is not volume-preserving. The method solves the advection part by tracing each point 
backwards in time along the divergence-free velocity vector field of the fluid. The flow of a divergence-
free velocity vector field is theoretically volume-preserving, but not if we approximate it using the 
method of characteristics, as proposed by the Stable Fluids method. We propose Kernelized Stable 
Fluids in order to ensure volume preservation when solving the advection step, thereby making the 
algorithm suitable for scientific simulations and not just visual effects. 

  



Coarse-to-fine diffusion language models 
Frank Y. Xiao 
Mentors: Pietro Perona and Rogerio Aristida Guimaraes  

Diffusion Language Models (DLMS) have recently emerged as an exciting potential alternative to 
autoregressive models. However, the current masked diffusion paradigm does not take advantage of 
the intermediate computations done during the diffusion reverse process, instead collapsing every 
masked token to a single generic mask during every intermediate step. We propose a coarse-to-fine 
diffusion process that introduces semantically meaningful intermediate tokens that allow DLMs to pass 
tokens through a hierarchy of masks before settling on their final lexical values. We (i) define a new 
discrete forward noising process that respects arbitrary mask hierarchies, (ii) generalize the Rao-
Blackwellised ELBO to multi-transition chains, yielding a low-variance training objective, and (iii) 
design an efficient ancestral sampler that exploits the hierarchy for faster decoding. We benchmark 
our methods on generative perplexity tasks on LM1B and explore the viability of coarse-to-fine DLMs.  


